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An immersed boundary technique is used to model a riblet covered surface on one 
wall of a channel bounding fully developed turbulent flow. The conjecture that the 
beneficial drag reduction effect of riblets is a result of the damping of cross-flow 
velocity fluctuations is then examined. This possibility has been discussed by others 
but is unverified. The damping effect is explicitly modelled by applying a cross- 
flow damping force field in elongated streamwise zones with a height and spacing 
corresponding to the riblet crests. The same trends are observed in the turbulence 
profiles above both riblet and damped surfaces, thus supporting cross-flow damping 
as a beneficial mechanism. It is found in the examples presented that the effect of the 
riblets on the mean flow field quantities (mean velocity profile, velocity fluctuations, 
Reynolds shear stress, and low-speed streak spacing) is small. The riblets cause a 
relatively small drag reduction of about 4%, a figure that is in rough agreement with 
experiments and other computations. The simulations also suggest a mechanism for 
the observed displacement of the turbulence quantities away from the wall. 

The immersed boundary technique used to model the riblets consists of creating an 
externally imposed spatially localized body force which opposes the flow velocity and 
creates a riblet-like surface. For unsteady viscous flow the calculation of the force is 
done with a feedback scheme in which the velocity is used to iteratively determine 
the desired value, In particular, the surface body force is determined by the relation 
f(x,, t )  = a JOf U(xs ,  t')dt' + PU(x, ,  t )  for surface points xs, velocity U ,  time t and 
negative constants a and p. All simulations are done with a spectral code in a single 
computational domain without any mapping of the mesh. The combination of the 
immersed boundary and spectral techniques can potentially be used to solve other 
problems having complex geometry and flow physics. 

1. Introduction 
It has been found experimentally that surfaces possessing streamwise grooves 

(riblets) are capable of reducing turbulent flow skin friction. Walsh (1990) and 
Coustols & Savill (1992) provide comprehensive reviews of the experimental work 
on the riblet drag reduction effect. Related concepts date back to a German patent 
application (Kramer 1937) which suggested that suspended streamwise wires could 
shield the wall region from outer-region turbulent fluctuations. The incentive for 
finding a general purpose and easily manufactured passive surface texture which 
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reduces skin friction drag is clear. Effective textures have generally been found to be 
ridges having triangular, cusped, or rectangular cross sections and, in fact, a plastic 
film having sub-millimetre scale triangular riblets which may be applied to a surface 
has been developed commercially. 

The idea for riblets appears to have come from three sources. Kennedy, Hsu & 
Liu (1973) suggested that the shear stress in corners would be reduced based on the 
observation that the wall shear is reduced in the corners in square duct turbulent 
flow. Liu, Kline & Johnston (1966) thought that long fences could be used to confine 
the growth of the streamwise boundary layer vortices. These vortices are thought to 
be responsible for the up-welling of low-speed fluid away from the wall thus causing 
low-speed boundary layer streaks. Liu et al. wished to arrest the formation and 
ejection of larger scale eddies away from the wall as well as to suppress the finer 
scale turbulence. Finally, Bechert, Hoppe & Reif (1985), Bechert et al. (l986), Bechert 
(1987), Bechert & Bartenwerfer (1989) and Bechert, Bartenwerfer & Hoppe (1990) 
and Bruse et al. (1993) suggested an analogy with the ridges found on the scales of 
fast swimming sharks. 

Experimental drag reduction obtained from riblet surfaces has been disappointing- 
generally less than 10%. The underlying ideas motivating the use of ribbed surfaces 
may be flawed. While drag in the corners or valleys of the ribs is reduced, drag on 
the peaks is increased so that in a laminar flow the drag on the ribbed surface is 
greater than that over a smooth surface (Choi, Moin & Kim 1991n). In fact, Kennedy 
et d ’ s  (1973) results showed a drag increase in turbulent flow as well. Regarding the 
explanation of Liu et al, if riblets are spaced widely enough to surround a boundary 
layer vortex, they produce a substantial drag increase rather than a decrease. Finally, 
tests with shark skin itself have been ambiguous; dried or even fresh skin may not be 
representative of the effects on living sharks. The experimental shark skin model tested 
by Bruse et a!. showed only a small drag reduction. Other fast-swimming creatures do 
not have ribbed skin, so shark scale ribs may serve purposes other than drag reduction. 

While riblets decrease drag in some cases they increase it in others. A riblet covered 
surface has appreciably greater wetted surface area than a flat surface. The riblet 
peaks project into the high-speed near-wall flow and suffer much greater shear stress 
than do the valleys where the flow is slow. The riblets also alter the mean flow above 
the wall and the one- and two-point turbulence correlation quantities. Somehow, 
these various effects act in concert to produce the net drag reductions observed 
experimentally. A satisfactory explanation of the physical mechanisms which cause 
net drag reduction remains elusive. 

Recently it has become feasible to consider direct numerical simulation of turbulent 
flow over a riblet covered surface. Earlier computational efforts of Khan (1986) and 
Djenidi, Squire & Savill (1991) used turbulence models whose applicability might 
be questionable, e.g., the particular assumption of local isotropy of small-scale flow 
structures close to the riblets. The present work focuses on turbulent flow over riblets 
by directly integrating the equations of motion. Others have begun such simulations 
as well: Choi et al. (1991~) used a finite difference approach to simulate steady 
laminar flow over riblets and found that the drag increase became more pronounced 
as the ribs projected further into a channel flow. Choi et al. (1991b) have also 
extended their calculations to turbulent flow and found drag decreases in agreement 
with experiments. Chu, Henderson & Karniadakis (1992) and Chu & Karniadakis 
(1993) have used the spectral element-Fourier approach to study laminar, transitional, 
and turbulent flow over ten triangular riblets in a narrow channel and find drag re- 
ductions. currently full direct numerical simulations are expensive because of the 
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range of flow scales which must be represented and because drag effects are small 
and require long time integrations. 

The present work uses a different computational approach. In the spectral code 
used here, riblets are modelled by applying a body force to the flow near one of the 
channel walls so as to bring the flow to rest on a riblet shaped virtual surface. This 
approach for creating a virtual solid surface, has been shown (Goldstein, Handler & 
Sirovich 1993a) to be sufficient to model laminar and turbulent flow over complicated 
geometries. That work also provides a discussion of the numerical stability of the 
method. A review of the virtual surface approach (also referred to as the immersed 
boundary method) will now be given. 

When fluid flows over a body, it exerts a normal (pressure) force on the surface 
and also exerts a shear force. Conversely, the surface exerts a force of opposite sign 
on the fluid; in the no-slip case, this localized force is what brings the fluid to rest on 
the body. The fluid ‘sees’ a body through the forces of pressure and shear that exist 
along the surface. In an unsteady flow, such surface forces vary in time. Equivalently, 
if one applies the appropriate set of forces to the fluid, it will flow as if it were 
passing over a solid object. That is, the effect of certain boundary conditions can 
be mimicked with an equivalent external force field rather than with a specification 
of boundary conditions. Thus, flow about an arbitrary body can be computed in a 
simple computational domain with the body replaced by a force field. 

Immersed boundary techniques have been applied extensively to model moving 
boundaries: heart valves (Peskin 1972; Peskin & .McQueen 1980), a beating heart 
(Peskin 1977; Peskin & McQueen 1989; McQueen & Peskin 1980), a swimming fish- 
like structure (Fauci & Peskin 1988), and flexible particles in suspension (Fogelson & 
Peskin 1988). The basis of these models is that the solid being modelkd is defined by 
a set of connected boundary points which move (in the Lagrangian sense) through 
a fixed (Eulerian) mesh. The boundary points are connected by elastic links which 
create internal forces (to the body) that are transmitted to the surrounding fluid 
since the boundary points and the links are massless. The interior particle forces, 
calculated by an approximately implicit scheme or an implicit scheme (Tu & Peskin 
1992) provide part of the force density in the Stokes or Navier-Stokes equations. 
The forces and velocities are interpolated between the boundary points and the fixed 
mesh. Sulsky & Brackbill (1991) modelled elastic particles in a suspension where 
the force density in the particles is related to the displacement field computed from 
the stress-strain constitutive equations for an elastic solid. The flow is computed 
with a finite volume technique; interior as well as surface points represent the solid 
body. Unverdi & Tryggvason (1992) modelled droplets using a localized body force to 
simulate the effects of surface tension. They used front-tracking particles to maintain 
the separation between two fluids and calculated the entire flow with a finite difference 
approach. 

The works cited above were primarily concerned with boundaries moving through 
a fixed mesh and the flow field was computed with a finite difference/volume element 
approach. The boundaries move with the local flow velocity. The forces between 
boundary points, rather than the relative (or absolute) location of the boundary points, 
are what is specified in these schemes. In these approaches the force computation is 
fairly complex as it must model the interior stresses and strains of the solid. If the 
locations of the boundary points (rather than the forces between them) are specified, 
the problem is simpler. The force produced by each point may then be computed 
independently (Peskin 1972; Fauci 1991). In Fauci (1991) this approach has been 
combined with a vortex blob technique and has been shown to provide qualitatively 
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accurate solutions. An earlier related approach is that of Viecelli (1969, 1971) in 
which a shear-free surface is modelled with an adaptive pressure field in a marker 
and cell technique. The pressure along some desired boundary is used to enforce 
the no-through-flow condition; if fluid flows through the boundary the pressure is 
increased on the boundary until the through-flow ceases. 

In the work to be presented here, and in contrast to the work cited above, the 
range of applicability of the immersed boundary technique has been extended to 
fully turbulent flows on a fixed grid in a fully spectral code. A key feature of the 
present approach is that flows in complex geometries are reduced to ones which 
are rectilinear and hence are amenable to spectral methods. Reduction to spectral 
codes is achievable in other ways, most notably by the mapping of a complex 
domain to one that is rectilinear. Our method may be put into perspective by 
contrasting it with what can be expected from a such mapping. A mapping procedure 
generally leads to Poisson and other operators with non-constant coefficients. These 
can be efficiently solved by iterative methods (Orszag 1980). In general, however, 
the iterative solutions impose significant computational overhead, not to mention a 
substantial additional coding effort. By comparison, the virtual surface approach 
imposes only a small computational overhead, roughly 5 %  more computational 
time per time step in the calculations presented here, and little in the way of a 
coding burden. The memory overhead is small and scales with the number of 
surface grid points. We also have found that numerical stability is only modestly 
affected by the introduction of virtual textured surfaces in our codes. Finally, 
although we do not treat such issues here, the approach can easily be adapted 
to cases in which moving boundaries are present (see Goldstein, Adachi & Isumi 
1993b, Saiki & Biringen 1995 and the works related to Peskin’s approach mentioned 
above 1. 

2. Virtual surface approach 

as follows: 
The incompressible Navier-Stokes equations with an external force field are written 

- = u x a -  v P I P + -  U - U )  +VV2U+f 
( 2  

au 
at 

and 

v * u = o .  (1b) 
Here, t is time, U = ( U ,  I/, W )  is the velocity in rectangular coordinates (x, y ,  z ) ,  52 is 
the vorticity, p is the pressure, p is the density, and v is the kinematic viscosity. The 
force f in ( la) ,  which is used to generate a virtual surface, is given by 

f(x, t; 1 s )  = g(x, t)@ - x s )  (2) 
where the position vector x, locates the bounding surface and g(x, t )  is a feedback forc- 
ing which will be given below. A more detailed presentation of this formalism, given 
by Salathe & Sirovich (1967) and Sirovich (1967, 1968), justifies and demonstrates 
several aspects of the formalism developed in Goldstein et al. (19934. 

The object of the virtual surface approach is to determine g(x, t )  such that the fluid 
motion is brought to rest (for a no-slip boundary) at x,. To accomplish this the force 
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is made to adapt itself to the local flow field.? In particular, consider a force field 
given by 

g(x, t )  = a U(x, t’)dt’ + /?U(x, t )  ( 3 )  Jo’ 
where the quantities CI and p are chosen to be negative constants (see Goldstein 
et al. 1993a). This force field represents an explicit feedback of the time integral 
of the velocity and the velocity itself. One might at first think that using concepts 
from linear control theory in simulations of turbulent and highly nonlinear flows 
would be difficult, especially because the control is digital rather than analog (Dorf 
1983). Yet, as will be seen, one needs only to control small regions of the flow where 
near-linear responses are expected. The first term in (3) with integral feedback is 
alone sufficient to create a force field that will bring the flow to rest on the surface 
points. For example, if U is greater than zero, the force will increase with time in a 
direction opposite to that of U until the flow comes to rest. This is the restorative 
or spring force. The second term can be thought of as representing a force created 
by the Stokes drag of an obstacle that is too small to be resolved. This force 
applies damping and might, for example, represent the drag on a fine hair located 
at x. 

This simple feedback on boundary points may be thought of as creating a force 
field that ‘learns’ to simulate the desired boundary condition. In an unsteady flow, 
the gain a must be large enough so that the resulting response time of the forcing 
(natural frequency = ( 1 / 2 7 ~ ) l a 1 ’ / ~ )  is faster than the most energetic flow frequencies in 
order that the force field can track the changing flow. The method by which the time 
integral is evaluated will determine the maximum magnitude of a to ensure stability. 
In the simulations discussed below, the time integral is approximated simply by a 
Riemann sum: 

N .I’ U ( x ,  t’)dt’ rn V ( x ,  j ) A t  
j=l 

(4) 

where N is the number of steps, and At is the size of the time step. The time marching 
of the forcing term is done with a second order accurate Adams-Bashforth scheme. 
We find that the stability limit for the time step is approximately given by 

where k is a problem-dependent constant of order one. With moderate integral 
gain the viscous forces and the PU term damp out the spring/mass-type temporal 
oscillations. It should be noted that the force f depends only on the flow at x, 
and that the forces at different boundary points do not interact except through the 
mediation of the fluid. The computational time for each virtual surface location is 
small (simply updating (4) and evaluating (3)) so that the total additional time for 
utilizing a virtual surface is simply proportional to the number of boundary points. 
It is not necessary to bring the flow to rest within the body. In fact, as will be seen 
shortly, fluid will in general flow below the modelled riblet surface (inside the solid) 
while the velocity is forced to be zero on the riblet surface itself. 

t The force field f can be determined in a number of different ways but the the force required is 
unique in that there can be only one force which creates the no-slip and no-through-Aow condition. 
Conversely, a t  some instant in time the flow would create only one pattern of surface forces. 
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3. Numerical methods 
3.1. Description of the spectral code 

A spectral method code (Kim, Moin & Moser 1987; Handler, Hendricks & Leighton 
1989) is used to solve the governing incompressible Navier-Stokes equations. We 
consider a channel, periodic in the streamwise (x) and spanwise directions (z) and 
bounded by impermeable flat surfaces in the vertical direction (y). Flow quantities 
are represented by Fourier expansions in the horizontal (x, z)-plane and a Chebyshev 
expansion in the wall normal direction. It is convenient, because of the numerical 
method used, to add the force f to the nonlinear term U x 52 since both terms are 
most efficiently evaluated in physical space. De-aliasing in the x- and z-directions 
occurs during the plane by plane evaluation of U x 52 by interpolating U and 52 
onto a grid having 3/2 as many collocation points in each direction. The force field 
required is then also calculated on this expanded grid. Because these collocation 
points may not correspond to the regular grid sites, the surfaces created with the 
force field are properly interpreted only on the expanded grid. 

smooth surface rather than a step-like surface the force field 
in the two periodic directions by using a narrow Gaussian 

In order to generate a 
given by (2) is modified 
distribution as follows: 

where the surface point 
grid site ( i , j , k ) .  With e 

all x, 

x , ~  is located at grid site (i,s,j,s,k,s) and point x is located at 
= 1 the immediately adjacent points receive about 37% of 

the central force while points two grid sites further away receive essentially none. The 
effect of this local smoothing is to blur the exact location of the surface and extend its 
reach slightly. Hence, the exact location of the surface is blurred over about one grid 
site. If sufficient spatial resolution has been used one finds that the exact smoothing 
function is not critical provided it has similar compact support. In the simulations 
of three-dimensional flow discussed below, such spatial smoothing is not done in the 
Chebyshev direction. 

Introducing nearly point forces into a spectral representation of the flow poses some 
unique problems since singularities tend to produce spatial oscillations that, if left 
alone, simply remain at  about constant amplitude during the calculation. As might 
be expected, the oscillations were by far the greatest at the highest wavenumbers and 
were insignificant at lower wavenumbers. 

It was found that two relatively benign remedies could effectively remove these 
oscillations. In the Chebyshev direction as well as in the Fourier directions, mild 
spectral smoothing is used. The spectral coefficients of the quantity U x 52 + f are 
multiplied at every time step by a low pass filter function, K ,  given by: 

(7) 

where (nT, ny, n,) are the spectral mode indices in the (x, y, z)-directions and ( N x ,  N y ,  
N,) are the total number of modes in those directions. The decay constant = 20 is 
chosen so there will be a sharp cutoff of the highest modes and t2 = -1 is used so 
the highest wavenumber will be reduced by a factor of l/e. These values of and 
52 produce a filter K with the first 86% of the modes of U x 52 + f having over 
95% of their original energy at each step. The exact values of the constants should 
not be important as long as the natural energy cascade has generated little energy at 
the highest wavenumbers. Similar spectral smoothing has been employed by others 

K = e5*(n,/N,)"e52(n,/N,)~l e5zin.-lN,)il 
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as well (Gottlieb, Hussaini & Orszag 1984). Of course, with greater resolution this 
smoothing will have less influence on the flow because there will naturally be less 
energy in the highest modes. It does not appear necessary to remove the highest 
modes more completely. 

A second smoothing method is to create a flow inside the virtual solid body (below 
the riblets) to reduce kinks that otherwise develop in the mean velocity profile. The 
idea is analogous to potential flows past bodies for which an internal flow, usually not 
of interest, is created in the course of solving the problem. In the present instance, the 
force field maintains the no-slip condition on riblet surfaces. Internal flows below the 
riblet virtual surface are created simply for numerical reasons to provide a globally 
smooth velocity field. See Goldstein et al. (1993~) for a more detailed description of 
the internal flows used. 

3.2. Tests of the virtual surface approach 
The effect of interest, drag reduction by the riblets, is expected to be small (0 to 
10%). Such drag reduction is a result of the balance between the alteration of the 
dynamics of the near wall turbulence and the increased wetted surface area presented 
by the corrugated surface. The determination of surface drag due to turbulent flow 
over riblets requires long time averaging to obtain a satisfactorily low sampling error. 
It is not feasible to perform a significant sweep of the possible sources of error 
(grid resolution, smoothing techniques, etc.) for a fully turbulent flow. Instead, two 
related but simpler problems whose solutions are better understood are examined : 
laminar steady flow over riblets and fully turbulent flow over a flat plate. Laminar 
flow over riblets has been simulated by Choi et af. (1991a), Chu et al. (1992) and 
Chu & Karniadakis (1993) while turbulent flat wall channel flow has been studied 
numerically and experimentally by many others (see Kim et al. 1987 and Handler et 
al. 1989 and the references therein.) The case of laminar flow over riblets will illustrate 
the sensitivity of the present solution procedure to varying grid resolution, different 
smoothing techniques, and the boundary conditions imposed below the riblets. The 
turbulent flat-plate simulations will demonstrate that the time accuracy of the force 
field approach is sufficient for the simulation of turbulent flow over riblets. 

3.2.1. Laminar $ow over riblets 
A number of simulations of laminar flow over riblets were performed using the 

virtual surface approach. A summary of the computational parameters used in each 
of these simulations is given in tables 1-3. Simulations tabulated in table 1 (runs 
1-16) were used to demonstrate the effects of grid resolution on five different riblet 
geometries. The effects of different smoothing techniques are studied in the simulations 
summarized in table 2. Runs 17-20 illustrate the effects of spectral smoothing (51 and 

varied), runs 21-24 illustrate the effects of a different internal force field below the 
rib (G,,,, a pressure gradient force of opposite sign to the pressure gradient driving 
the bulk of the flow, G, is varied), and runs 25-27 illustrate the effects of spatial 
smoothing of the force field ( E  varied). Runs 28-31 (table 3) illustrate the effects of 
the boundary conditions applied below the riblet surface. 

Although the laminar flows considered here are two-dimensional, varying only in 
y and z with a mean flow in the x-direction, a fully three-dimensional code was 
used (Nx = 4) since a strictly two-dimensional code was not available. In these 
simulations a single riblet is created by applying the force field (see (3)) along a 
sequence of grid sites near the lower channel boundary as seen in figure 1. These 
points lie on the expanded 3/2 grid which has a cosine grid spacing in the y-direction 
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FIGURE 1. Geometry for laminar flow simulation of channel bounded by two impermeable bound- 
aries and containing a single virtual riblet surface. A uniform pressure gradient is applied above 
the riblet and a pressure gradient of opposite sign is applied below. 

( y j  = cos[n(j - l)/N,,], j = 1,2,3.. . Ny) .  If the frozen (forced) sites are spaced evenly 
in z and incremented and decremented in y (e.g. for a rib made of seven grid points, 
( j s , k s )  = (2, l), (3,2), (4,3), (5,4), (4,5), (3,6) and (2,7)) the riblets have a cusped shape 
due to the cosine grid. 

The initial condition for these simulations was a laminar (parabolic) profile given by 
u/uCI = 1 - ( ~ / h ) ~ ,  where h is the channel half-width, u , ~  is the centreline velocity, and 
the Reynolds number, Rec/ = uclh/v, was chosen to be 1000. The driving pressure gra- 
dient was constant in time as it is for all simulations to be presented in this work. The 
equations of motion (la,b) are scaled in such a way that the non-dimensional pressure 
gradient, G, is given by G = ( R * / & I ) ~ ,  where R' = u'h/v is the friction Reynolds 
number, u* is the friction velocity given by u* = ( ~ , , , / p ) l / ~ ,  and z, is the shear stress 
at the wall. In these laminar simulations, R' was chosen so that the pressure gradient, 
G, exactly balances the wall shear stress generated by the initial parabolic profile. 
Here, R' = (2&1)'/~ for plane channel flow so that R' = 44.72 and G = 2 x lop3. 

At time t = 0, the riblet surface is generated near one wall of the channel using the 
virtual surface approach and unsteady laminar flow results in which the drag on both 
flat and ribbed surfaces varies in time. The simulations were run until a steady-state 
is achieved, which is defined here as the time at which the ratio of the drag on the 
riblet side to the drag on the flat side (the drag ratio DR)  changes less than 3 x 
per time step. The drag on the ribbed surface can be computed at any time from 
an instantaneous momentum balance involving the rate of change of momentum, the 
drag on the flat surface (both of which can be computed exactly at any instant), and 
the driving pressure gradient. 

The effects of spatial resolution (table 1) are now considered. For these simulations 
a sample of typical riblet geometries is given (figure 2). The rib angle 6 is defined as 
the angle between the Z-axis and the line segment connecting the riblet valley and 
the crest. Hence, the ratio of rib height to width is (1/2)tan(d). For future reference 
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Run 

1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 

15 
16 

NJ' 

64 
128 
256 

32 
64 

128 
256 

32 
64 

128 
256 

64 
128 
256 

64 
256 

Run 
Nx 
NY 
Nz 

BC 
E 

Nz 

6 
12 
24 

4 
8 

16 
32 

10 
20 
40 
80 

10 
20 
40 

10 
40 
- - 
- - 
- - 
- - 
- - 
- - 

E 

2 
2 
2 

2 
2 
2 
2 

2 
2 
2 
2 

2 
2 
2 

BC (51,52) AR 0 

Geometry for a medium 20" riblet 
S (20,-1) 8.4 20.0 
S (20,-1) 8.4 20.0 
S (20,-1) 8.4 20.0 
Geometry for a small 44" riblet 
S (20,-1) 12.8 44.0 
S (20,-1) 12.8 44.0 
S (20,-1) 12.8 44.0 
S (20,-1) 12.8 44.0 

Geometry for a large riblet 
S (20,-1) 3.4 45.0 
S (20,-1) 3.4 45.0 
S (20,-1) 3.4 45.0 
S (20,-1) 3.4 45.0 

Geometry for a small sharp riblet 
NS (-,0) 28.6 65.3 
NS (-,0) 28.6 65.3 
NS (-,0) 28.6 65.3 

Geometry for a small very sharp riblet 
2 NS (-,0) 57.1 77.0 (10,2) 
2 NS (-,0) 57.1 77.0 (10,2) 

Grm 

4 
4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

4 
4 
4 

4 
4 

Reference run number 
Number of modes in X (streamwise) direction 
Number of modes in Y (wall normal) direction 
Number of modes in Z (cross-flow) direction 
Measure of Gaussian width (see (6)) 
Slip (S) or no-slip (NS) (VW = virtual wall) boundary condition 
below the rib, wire or flat surface 
Decay constants (see (7)) 
Domain aspect ratio (height/width) 
Normalized crest-to-crest spacing 
Normalized crest height 
Rib angle 
Force field gains (see (3)) 
Magnitude of reverse pressure gradient below rib / pressure 
gradient above 
Drag ratio of riblet side to flat side 

TABLE 1. Grid resolution effects 

DR 

1.00875 
1.00576 
1.00489 

1.0322 
1.0256 
1.0219 
1.0203 

1.1240 
1.1064 
1.1002 
1.0974 

1.0422 
1.039 
1.0377 

1.0483 
1.0445 

it should be noted that the riblet geometry in Runs 12-14 corresponds, roughly, to 
the riblet used in one of the fully turbulent cases (84.1.2). As indicated in table 1 
the drag ratio is not particularly sensitive to spatial resolution if enough resolution 
is used. In each case, quadrupling the resolution from N y  = 64 to N y  = 256 produces 
only a small 0.5% drop in the drag ratio. These results are consistent with the trends 
observed by Choi et al. (1991~). One thus concludes that the resolution used in the 
later turbulent flow simulations for which N y  = 64 should give sufficient accuracy and 
that it is reasonable to expect that the turbulent drag that would have been computed 
with much higher spatial resolution would not differ in any substantial amount from 
the drag results reported here. 

Choi et al. (1991~) found that larger riblets produced greater laminar drag. This 
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Run 5 Run 9 Run 12 

FIGURE 2. Contours of constant U-velocity over select single riblets. Close-up view of riblet region 
and 3/2 grid are seen below the full channel view. 

is an intuitively reasonable result since larger riblets present more surface area. One 
observes the same trends in table 1 : riblets which project further toward the centreline 
or have larger rib angles (0) produce greater drag. In no instance did the current 
laminar simulations give less drag on the riblet side, and this result is consistent with 
those of Choi et al. (1991~). 

The effects of the three different smoothing techniques are presented in table 2: 
spectral filtering of the U x C2 + f term, forced internal flow below the riblet surface, 
and spatial smoothing o f f  in the x- and z-directions. The table presents the effects 
of these three techniques on a B = 45" riblet projecting 14.7% across the channel. For 
such a rib the drag is about 10% greater than on a flat surface and this provides a 
more sensitive comparison than is possible with a smaller riblet. 

and 5 2  
(see (7)). A small value of c1 and a more negative value of 5 2  both imply stronger 
smoothing. As seen in runs 17-20, as the strength of spectral smoothing is increased, 
the drag ratio also increases. The change in drag is caused, at least in part, by the 
resulting inaccuracy in the determination of the derivative d u / d y  where U is the 

The strength of the spectral smoothing is characterized by the constants 
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17 
18 
19 
20 

21 
22 
23 
24 

25 
26 
27 

64 
64 
64 
64 

64 
64 
64 
64 

64 
64 
64 

Vary spectral smoothing for large rib 
20 2 NS (-,0) 3.4 45.0 (10,l) 
20 2 NS (20,-1) 3.4 45.0 (10,l) 
20 2 NS (5,-10) 3.4 45.0 (10,l) 
20 2 NS (2,-10) 3.4 45.0 (10,l) 

20 2 NS (20,-1) 3.4 45.0 (10,l) 
20 2 NS (20,-1) 3.4 45.0 (10,l) 
20 2 NS (20,-1) 3.4 45.0 (10,l) 
20 2 NS (20,-1) 3.4 45.0 (10,l) 

Vary G,,, below large rib 

Vary width of Gaussian spatial smoothing for large rib 
20 1 NS (-,0) 3.4 45.0 (10,l) 
20 2 NS (-,0) 3.4 45.0 (10,l) 
20 10 NS (-,0) 3.4 45.0 (10,l) 

0 
4 

100 
4-soot 

4 
4 
4 

1.1065 
1.1067 
1.1117 
1.141 

1.1072 
1.1067 
1.093 
1.1066 

1.1086 
1.1065 
1.1049 

t G,,, was 4G under the crest and varied smoothly to 800G under the bottom of the valley 

TABLE 2. Different smoothing technique effects 

mean streamwise velocity on the opposing flat wall. Note, however, that there is 
virtually no difference (0.02%) in DR between the no-smoothing case (run 17) and 
the mild smoothing case (20th order smoothing, run 18). The mild smoothing of run 
18 is the same as that used in the turbulent simulations over riblets ($4). Even the 
strongly smoothed cases (runs 19 and 20) produced remarkably good drag results (a 
few percent different from the unsmoothed case). 

The creation of flow below the solid riblet surface, so that the velocity profile is 
reasonably smooth across the surface, provides an additional method of smoothing. 
To explore the solution sensitivity to this internal flow, the amplitude of G,, is varied 
from zero to -100G in runs 21-23. It is evident that the difference in the drag 
ratio between no forcing (G,,, = 0) and mild forcing is only 0.1% while a much 
larger forcing (-100G) only produces an 0.8% change in the drag ratio. For these 
three simulations G,, is a constant everywhere below the rib surface whereas in the 
turbulent simulations G,,, was made to be small below the riblet peaks and large 
below the valleys in order to better smooth the mean velocity over each section. In 
run 24 G,,, is -800G below the valley portion and drops to -4G below the rib crest. 
The effect of G,,, upon the drag of a riblet is again negligible. It is seen from runs 
21-24 that the effect of G,, upon the drag is small and that the force field used to 
create the riblet itself effectively decouples the flows on either side. 

In practice a slight spatial smoothing of the force field is used. As seen in the 
results from runs 25-27, if the exponential constant ( F )  used in the Gaussian spatial 
smoothing (see (6)) is varied from -10 to -1 ( c  = -10 means virtually no smoothing 
whereas F = -1 implies spreading the force field widely to +_2 grid sites) there is only 
a 0.5% change in the drag ratio. The width of the Gaussian used in the turbulent 
simulations of flow over riblets ($$4.1.1, 4.1.2) is intermediate ( F  = -2, f spread 
approximately to f l  grid site) and thus is expected to produce an error in the drag 
of around 0.2%. 

We obtain second-order convergence near the surface. However, the cosine grid is 
very fine near the surface and such accuracy is adequate to ensure small errors in that 
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Run Ny N z  E. BC ( 4 1 , 4 2 1  A R  0 ( u , P )  G,,, D R  

Check effect of slip/no-slip below large rib 
28 64 20 2 NS (20,-1) 3.4 45.0 (10,l) 4 1.1067 
29 64 20 2 S (20,-1) 3.4 45.0 (10,l) 4 1.1064 

Check effect of gap in valley of large rib 

31 64 20 2 S (20,-1) 3.4 45.0 (10,l) 4 1.1067(Gap) 

TABLE 3. Other comparisons 

30 64 20 2 S (20,-1) 3.4 45.0 (10,l) 4 1.1064 

region as demonstrated by the laminar calculations. Elsewhere in the flow no spatial 
smoothing is applied, only the high-order spectral filter. 

The conclusion to be drawn from these sensitivity checks is that, if the turbulent 
drag is affected by these various parameters as it is in the laminar case, the turbulent 
drag results to be presented below are computed with sufficient spatial resolution and 
are insensitive to the smoothing used. That is, the sum of the absolute values of the 
various possible resolution and smoothing errors in drag ratio in the turbulent runs 
amounts to only about 1%. 

3.2.2. Boundary condition tests f o r  laminar $ow over riblets 
Simulations to verify the adequacy of the boundary conditions used below the riblet 

surface and one other test were also performed. The first test was to compare the drag 
ratio for two riblets having either a no-slip (run 28) or free-slip (run 29) boundary 
condition imposed on the flow domain boundary below the riblet. As seen in table 3, 
there is virtually no effect (0.03%) upon the drag. In the turbulent simulations a 
free-slip boundary condition is used. 

In the turbulent simulations a small kink or gap is permitted in the riblet shape 
deep in the valley between ribs (see 54.1.1). That is, in a valley the j ,  locations of the 
frozen grid sites were ... 7 6 5 4 2 2 4 5 6 7...or ... 7 6 5 4 2 4 5 6 7...  : there is a 
kink between sites at j ,  = 2 and j ,  = 4. The kink permits the use of specific riblet 
dimensions and numbers of riblets within the constraints imposed by the domain size 
in x and z and the desired grid resolution. In runs 30 and 31 a comparison is made 
between the drag ratios found with a smooth valley ( j ,  = . . . 5  4 3 2 3 4 5.. . ) and 
a valley with a small kink ( j ,  = . . . 5  4 2 2 2 4 5.. . ). There is again only a minor 
(0.03%) change in the drag ratio. This is reasonable since the kink is deep in the slow 
valley flow where wall-normal velocity gradients are very small. 

3.2.3. Turbulent flow over a virtual $at plate 
An important test of the virtual surface approach is to determine whether a virtual 

no-slip boundary can accurately represent an exact no-slip boundary for the case of 
fully turbulent flow. For this purpose, two simulations of fully developed turbulence, 
which are described in table 4 as runs 32 and 33, were performed. In the first (run 
32), the flow was bounded on one side by a no-slip boundary generated by directly 
imposing the no-slip boundary conditions (i.e. an exact no-slip boundary on which 
U = 0) and on the other by a virtual surface generated by methods described in 92. 
This simulation allows for a direct comparison of the turbulence statistics near both 
walls. Such a comparison, while necessary, is not sufficient to eliminate the possible 
existence of global errors. To determine such numerical effects, a second simulation 
(run 33) was performed in which the exact no-slip boundary conditions were imposed 
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FIGURE 3. Mean streamwise velocity, g ,  for turbulent flow runs 32 and 33. - - - , virtual wall; 
---, opposing real boundary (run 32); A, both real boundaries from run 33. 

on both walls (i.e. no virtual wall was present). This simulation was performed at the 
same friction Reynolds number, R', as run 32. Unless otherwise stated, denotes 
the mean velocity, u', u', and w' indicate root mean square velocities while u, u, and 
w indicate fluctuating quantities (e.g. u = U -a). Again, ( U ,  V ,  W )  indicate the total 
velocity as in equation (1). In addition, length scales made non-dimensional by the 
viscous scale l ' ,  where l*  3 v/u', will be denoted by, for example, y+ = y/l'  . Each 
simulation was run to a steady state before statistics were accumulated. 

In run 32, the virtual wall was located 15 grid points above the boundary of the 
computational domain and the dimensions of the domain were 1217, 231, and 609 in 
units of I' in the x-, y -  and z-directions respectively. In run 33 the dimensions were 
1155, 231, and 577. The time step used in both cases is A t d 2 / v  = 0.043. The control 
parameters, c1 and p, for run 32 were 37.5 and 15, respectively. These parameters 
were fine-tuned (maximized) before the longer simulations were performed to ensure 
a very close approximation to no-slip conditions at the virtual wall. 

Certain differences in scaling for runs 32 and 33 should be noted. For example, in 
run 32 the height of the computational domain is larger than the distance between 
virtual and exact walls whereas for run 33 the walls coincide exactly with the domain. 
This leads to the definition of the friction Reynolds number in these two simulations 
as R' = u * H / v ,  where u* is the friction velocity based on the total force driving 
the flow between virtual (or exact as in run 33) and exact walls, and H is half the 
distance between the walls. Based on this definition R' was chosen to be 115 for both 
simulations. The differences in scaling between runs 32 and 33 are somewhat subtle 
and have been fully taken into account in all statistical comparisons to be presented 
in this section. 

Other differences between run 32 and run 33 exist. The streamwise and spanwise 
spatial resolution for run 33, measured in units of Z', is about 5% greater than 
the resolution in run 32. The resolution in the y direction for run 32 is greater in 
the vicinity of the exact no-slip wall compared to the resolution near the virtual 
wall because of the uneven grid distribution in the wall-normal direction. The total 
integration time for run 32 ( T +  = 1733 where T+ = NstepAtu*'/v, and NstepAt is the 
computational time) is twice that for run 33 (Tf = 867) where results from both 
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Y+ 
FIGURE 4. Fluctuating velocity profiles. -, u'/u*, real wall, run 32; - - -, u'/u*, virtual wall; 4, 
u'/u', real walls, run 33; . . . , u'/u', real wall, run 32; - - - - -, u' /u*,  virtual wall; V, u' /u* ,  real walls, 
run 33; - .  - .  -, w ' / u * ,  real wall, run 32; +-x-+, w'/u*, virtual wall; 0, w ' / u * ,  real walls, run 33. 

0.8 , 

0 25 50 75 100 125 

Y+ 
FIGURE 5. Reynolds stress profiles. - - -, virtual wall; -, opposing real boundary (run 32); 

4, both real boundaries from run 33. 

sides of the channel are averaged gwing a sampling error which is roughly equal to 
that of run 32. It is straightforward to estimate the large eddy turnover time for this 
flow, T,, by T, = ~ H / ( U ' ) ~ ~ ~ ,  where (u'),,,,~ is an estimate for the maximum root mean 
square streamwise turbulence intensity. For these flows, T,u*~/v  N 77, so that run 32 
represents about 23 large-eddy turnover times. 

Plots of the mean velocity profiles for both runs are shown in figure 3. The profiles 
for the virtual wall and the opposing exact wall are in good agreement, both exhibiting 
a logarithmic layer yielding a von Karman constant of 0.4. In addition, the velocity 
profile for run 33 is in good agreement with those of run 32. For runs 32 and 3 3  
the ratios &l/Rb, where K l  and Rb are Reynolds numbers based on the centreline 
and bulk velocities respectively, are 1.9, in reasonable agreement with 1.7 obtained 



348 D. Goldstein. R. Handler and L. Sirovich 

u3 

0.5 

- 
v3 

v’3 
- 

- 
w3 

w’3 
- 

0 

-0.5 

-1.0 ! I 

0 25 50 15 100 125 

- Y+ - 
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FIGURE 7. Flatness. -, ?Id4, real wall, run 32; - - -, 7 / u f 4 ,  virtual wall; A, 2 / u l 4 ,  real walls, 
run 33; . . . ., 2 / u f 4 ,  real wall, run 32; - - - - -, v 4 / d 4 ,  virtual wall; V, p/vf4, real walls, run 33; 
- . - .  -, w ~ / w ’ ~ ,  real wall, run 32; +ex+, w ~ / w ’ ~ ,  virtual wall; 0, W ~ / W ’ ~ ,  real walls, run 33. 

- 
- - 

from the experimental correlations of Dean (1978). The turbulence intensities scaled 
with the friction velocity 24’ are shown in figure 4. It is evident that the agreement 
between the virtual wall and the opposing exact no-slip wall (run 32) is excellent as 
is the agreement between run 32 and run 33.  The Reynolds shear stress profiles for 
these two simulations are shown in figure 5 and also indicate good agreement for all 
three walls. The minor discrepancies evident in these results can easily be accounted 
for by sampling error considerations. 

The higher-order statistics, skewness and flatness, normalized by local root-mean- 
square values, are shown in figures 6 and 7. The skewness results for all three walls 
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FIGURE 8. Contour plot of of streamwise velocity, u/u*  on an (x,y)-plane at y+ = 10.23 above the 

virtual wall in run 32. 

are in good agreement and again it can be shown that the minor differences are well 
within the bounds of the sampling error. The flatness results show excellent agreement 
for all three walls for the spanwise and streamwise velocity components. Near the 
wall, for yf < 15, it is evident that the flatness for the vertical velocity fluctuations 
in run 33 is higher than for the virtual wall results. Some part of this difference is 
probably due to sampling errors, since, for example, the results of Kim et al. (1987) 
give a value of about 22 for the flatness for v very near the wall which is roughly 
halfway between the results for run 32 and run 33. Sampling errors may not account 
for the entire difference between these two cases for the flatness and it is possible that 
that small errors in satisfying the condition of no flow normal to the virtual surface 
could be a contributing factor. 

Figure 8 is a contour plot of the streamwise velocity component in the horizontal 
(x, z)-plane at a distance of y+ = 10.23 above the virtual surface. The well-known low- 
speed streaky structure is clearly evident in the figure. The positive skewness which is 
expected at this height is also evident. A quantitative measure of the spanwise length 
scale defined by the streaks, A+, can be determined by computing the correlation 

and using the definition that the streak spacing is twice the spanwise distance at 
which Ruu(Az) attains a minimum. For the virtual wall this analysis yields A+ = 95 
at yf = 6.1 and 114 at y+ = 20.3. These values are within the experimental range 
and are in agreement with the observation that the streak spacing increases with 
increasing distance from the wall (Shraub & Kline 1965; Smith & Metzler 1983; 
Sirovich et al. 1991). 

In figure 9 a section of the same flow in a (y,z)-plane in which the velocity vectors 
in the plane are superimposed on contours of the streamwise velocity is shown. It is 
evident in this instantaneous snapshot that there are no qualitative differences between 
the structure above the virtual wall and the exact no-slip wall. The up-welling of low- 
speed fluid and down-welling of high-speed fluid is evident on both walls in the vicinity 
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FIGURE 9. View looking down the channel in the x-direction showing contours of constant streamwise 
( U )  velocity and selected V ,  W velocity vectors. Top boundary is smooth no-slip; bottom boundary 
is a virtual flat surface. Note that a weak back-flow exists below the virtual surface. 

of quasi-streamwise-oriented structures which are known to persist near the wall 
(Robinson 1991; Brooke & Hanratty 1993; and Bernard, Thomas & Handler 1993). 

The main conclusion from these two simulations is that the statistics of the 
turbulence above a virtual wall are almost indistinguishable from those above an 
exact no-slip boundary. Furthermore, the structure of the turbulence found near the 
the virtual wall shows excellent agreement with the structure found experimentally. In 
particular the characteristic length scale associated with wall-bounded turbulence - 
the 100 wall unit scale associated with the wall layer streaks ~ is reproduced above the 
virtual wall. Though some minor discrepancies between run 32 and run 33 were noted, 
these differences are at least in part due to sampling errors and do not indicate any 
fundamental problems with the virtual wall approach. These detailed numerical tests 
for both laminar and turbulent flows ($53.2.1 and 3.2.2) indicate that the virtual no slip 
wall is a thoroughly sound and robust model for the exact no-slip boundary conditions. 

4. Results for simulations over riblets and modelled riblets 
4.1. Turbulent ,flow over riblets 

For the two simulations of turbulent flow over riblets we expect relatively small drag 
reductions. Riblets having a triangular or cusped U cross-section, a peak to peak 
spacing, Sf, of 10 to 20, and a height, H + ,  of 5 to 15 are found experimentally to 
be most effective (Walsh 1990) in reducing drag. The channel modelled here has the 
orientation given in figure 10. In the bulk of the domain between the ribbed surface 
and the top boundary a constant pressure gradient, G, is applied in the x-direction. 
The value for G is chosen so as to achieve a steady-state value of R* (= 125). 

Accurate simulation of flow over riblets requires that each rib cross-section be 
represented by at least several grid points. In addition, to accurately simulate the 
turbulent flow the channel width and length should be greater than the size of 
characteristic turbulent flow structures such as boundary layer streaks and quasi- 
streamwise vortices. Jimenez & Moin (1991) suggest that a minimum channel for 
modelling sustained turbulence (i.e. one streak per wall) has a length of roughly 
L,' = 25&350 and a width of L Z f  = 100. Since their conclusions are based on 
simulations over flat walls, and since a priori domain size estimates may not apply for 
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FIGURE 10. Geometry for flow simulation of channel bounded by two impermeable boundaries 
and containing a virtual riblet surface. 

a ribbed wall, domain dimensions of 1250:250:375 (viscous units) in x : y : z  are chosen 
as safe estimates, and are likely to be sufficient to capture the dominant flow physics. 
Because of the severe resolution and temporal requirements implied by this analysis, 
it has not been feasible to perform detailed grid resolution studies of turbulent flow 
over riblets. 

In this investigation we present detailed flow results for two different riblet config- 
urations using two different spanwise resolutions. Both configurations place the rib 
dimensions within the drag reducing regime. In Case 1 (run 34 in table 4) the ribs are 
short and squat, S +  = 18 and H+ = 5.3, and in Case 2 (run 35) the ribs are higher 
and more closely spaced, as in the laminar runs 12-14, with Sf = 11.7 and H f  = 9.4. 

4.1.1. Case 1 ( S +  = 18, H +  = 5.3) 
In the first simulation the riblets are fairly widely spaced and do not protrude 

far into the flow. The grid sites in the y-direction which define the riblet geometry 
are given (for successive spanwise ( z )  locations) by . . . 2  2 4 5 6 7 6 5 4 2 2.. .These 
points lie on the expanded (in x and z )  3/2 grid which has the cosine scaling given 
previously ($3.2.1). The peak-to-peak spacing of the ribs is 9 expanded-grid sites (in 
z or 6 regular grid sites) and the ribs are 6 regular grid sites (in y) high. In this case 
there are 21 riblets along the channel width. 

The lower flow field boundary is shear free and there is a small space between the 
boundary and the riblet no-slip surface. In this space a force in the -x-direction, G,,,, 
as described in 53, is applied to create a flow inside the ribs that reduces the kinks 
that otherwise develop in the mean velocity profile. The value of G,,, is small (-4G) 
below the rib peaks and large (-800G) below the valleys. The G,,, profile was chosen 
to minimize the energy in the highest Chebyshev mode for u over each portion of 
the rib. Once this procedure was complete and the oscillations were very small, it 
was found that the moderate spectral smoothing described earlier was sufficient to 
eliminate the remaining oscillations. The simulation begins by abruptly inserting the 
ribbed virtual surface into an equilibrium turbulent channel flow and allowing the 
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FIGURE 11. (a) View looking down the channel in the x-direction showing contours of constant 
streamwise ( U )  velocity and selected V ,  W velocity vectors. Top boundary is smooth no-slip; bottom 
boundary has wide (Case 1) riblets. (b)  Close-up view of a portion of (a). 

flow to relax for at least one large-eddy turnover time. The autocorrelation of the 
ratio of the drag on the ribbed side to the smooth side was used to estimate the 
number of time steps between independent flow field realizations. In the present case, 
the simulation was run for about 23 such independent realizations. 

Typical instantaneous results are shown in in figure ll(a,b) which gives views 
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FIGURE 12. View looking down the channel in the x-direction showing contours of constant 
streamwise (x) vorticity and selected V ,  W velocity vectors. 

looking down the channel in the x-direction. Contours of constant streamwise 
velocity are shown along with vector velocities in the (y,z)-plane. One observes what 
appears to be ordinary turbulent channel flow in the bulk of the domain indicated 
by streamwise vortices which draw slow-moving fluid away from the walls and bring 
high speed fluid toward the walls. A detailed picture of the flow (in figure l l b )  shows 
that the ribs seem to affect only the region close to the wall. As expected, near the rib 
peaks the contours are closely spaced and the velocity gradient (hence drag) is high 
while in rib valleys the gradient is low. It should be noted that the ribs, essentially 
defined by the zero velocity contour line, are of a consistently uniform shape even 
though each is experiencing a different local flow. The rib shapes remain rigid and 
none are substantially distorted. Hence, the force field is responding sufficiently 
rapidly to the unsteady flow. 

There do occasionally exist small scale streamwise rollers in the riblet valleys. In 
particular, there is a small roller seen in the riblet valley located around z+ = 275 
in figure l l(b).  In that figure two re-attachment events on rib crests (at z+ = 265 
and z+ = 318) and one rib crest separation event ( z+  = 284) are evident. Such 
re-attachment and separation events most often occur at rib crests; hence, the crests 
tend to pin down and discretize the events in the spanwise direction. The extent to 
which the vorticity penetrates into the valleys is seen in figure 12 in which contours 
of constant streamwise vorticity (Q,) are shown. For these widely spaced riblets, 
x-vorticity is seen to sometimes penetrate into valleys but is also often concentrated 
near riblet crests. Contour plots of flow in (x,z)-planes (figures 13 and 14) clearly 
show the long low-speed streaks present near both the flat and the ribbed surfaces. 

The turbulence intensities and mean velocity profiles above the ribs at both peaks 
and valleys (figure 15a-c) are compared to those obtained from normal flat-walled 
channel flow (Handler et al. 1989). It should be noted that a careful comparison of 
the turbulence statistics on the flat side of the channel for both runs 34 and 35 with 
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FIGURE 13. Contour plots of an (x,z)-plane at y+ = 12 above the riblet valleys. (a) Streamwise 
velocity, u/u ' ,  ( b )  wall-normal velocity, v/u', and ( c )  magnitude of vorticity, IS21v/u'*. 

the results of Handler et al. (1989) show excellent agreement. In figure 15(a-c) the 
corresponding profiles are normalized by the appropriate U* and 1' for that side. For 
example, the friction velocity of the ribbed side, U'rib, can found from the smooth 
side value, ufsmooth, by using Ufrib = u*,, , ,~~(DR)~/~. It is evident that all of the profiles 
are shifted away from the wall by nearly the height (5.31") of the riblet peaks. In 
figure 16(a-c) the profiles are offset wallward by the height of the riblet peak and 
it is evident that these shifted profiles correspond well with the flat wall results. 
The riblets appear to push the mean location of the no-slip surface further into the 
flow. This feature was also observed in the experiments of Vukoslavcevic, Wallace & 
B a h t  (1992) and was discussed in Wallace & B a h t  (1988). The height of the origin, 
however, is different over the peaks and valleys. A general method for predicting 
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FIGURE 14. Contour plots of an (x,z)-plane at y+ = 18 above the opposing flat reaI boundary. 
(a) Streamwise velocity, u/u ' ,  ( b )  wall-normal velocity, v/u', and ( c )  magnitude of vorticity, IJ2/v/u'*. 

the displacement of the origin of the mean velocity profile is not yet evident. In this 
particular case, however, i t  appears that in the bulk of the flow the height of the 
origin is about equal to the peak height. Observe in figure 15(b) that over the rib peak 
the mean velocity profile seems to end abruptly in the buffer region ( 5  < y t  < 30) 
with little or no laminar sub-layer. This seems to be simply a consequence of the 
convex curvature of the riblet crests. 

In general, there appears to be little difference between the profiles over the riblets 
and over a flat plate; the peaks in the Reynolds shear stress, u', and v' are of essentially 
the same magnitude over both surfaces while the w' peak over the riblets is depressed 
by a few percent. Note that whereas over a flat surface and over the rib peaks du'ldy 
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FIGURE 15. Profiles near riblets. (a )  Fluctuating velocity profiles and ( b )  mean velocity profile: --, 
Handler et. al.; . . - . ,  above rib peaks - - -, above riblet valleys. (c) Reynolds stress profiles: -, 
Handler et.  al.; 0, above rib peaks; 0, above riblet valleys. 

and dw'ldy are clearly similar, in the riblet valleys it appears that this is not so; both 
u' and w' are inflectional near the height of the rib peak and du'ldy and dw'ldy are 
an order of magnitude smaller, deep in the valley, compared to near a flat wall. The 
small differences between the root-mean-square velocity profiles over the peaks and 
valleys disappear for distances of about 102' above the peaks. The small Reynolds 
stresses in the valleys raise doubt that the counter-rotating vortex pair found by Khan 
(1986) is related to the drag reduction phenomenon. The present results do not show 
substantial vertical mixing of the valley fluid. 

The spanwise covariance Ruu(Az) is shown at at different heights above both the 
ribbed (figure 17a) and opposing flat wall (figure 17b). The streak spacing obtained 
from the spanwise covariance (equation (8)) near both walls is about the same, 112 for 
the ribbed side and 100 for the smooth side.t Even though there is a 12% difference 
in streak spacing, no significance is attached to this since even with a larger drag 

t Henceforth, the spacing between streaks is considered to be that measured on the y-plane 
where the covariance minimum reaches its lowest value. 
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reduction (see Case 2 below) the streak spacing is essentially unaffected. The height of 
the streaks above the wall is significant, however. Over the ribbed wall the covariance 
minimum occurs at about y+ = 18 whereas over the flat wall the minimum occurs 
much lower at about y+ = 12. Hence, the riblets push the streaks away from the 
wall by an amount about equal to the height of the riblets themselves. Streak height 
values are estimated to be accurate to about +3l*. 

For this riblet configuration, experiments (Walsh, 1990) indicate only a small 1-5% 
drag reduction. Our simulation yielded a 2.2 +1.90/, decrease in drag where the 
error bars indicate a 90% confidence interval assuming a normal distribution for 
the independent realizations discussed above. With such a small drag change, the 
correspondingly small changes in the flow not immediately adjacent to the surface 
seem reasonable. 

4.1.2. Case 2 ( S +  = 11.7, H' = 9.4) 
The most significant drag reductions (3-8 %) achieved in experiments with cusped 

or triangular cross-section riblets occur for S+ = 12 to 15. To investigate this regime 
a simulation with more closely spaced riblets having S+ = 11.7 and H' = 9.4 was 
performed (run 35). For this case it was necessary to use greater spanwise resolution, 
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streamwise ( V )  velocity and selected V ,  W velocity vectors. Top boundary is smooth no-slip; 
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256 modes, to adequately resolve the ribs. The y-locations, measured in grid sites 
on the expanded 3/2 grid, where the velocity is brought to rest are, at successive 
z-locations, . . .2 4 5 6 7 8 9 8 7 6 5 4 2.. .The peak-to-peak spacing of the ribs is 12 
expanded-grid sites and the ribs are 8 regular grid sites high. For this case there are 32 
riblets along the channel width. The greater spanwise resolution in this case required 
a reduction in time step ( A ~ u * ~ / v  = 0.078) to satisfy numerical stability restrictions. 
For this geometry a drag reduction of 3.3 +_2.3% was obtained using 17 independent 
flow realizations. This is again within the low end of the range found in experiments 
possibly owing to a low channel Reynolds number effect (Bruse et ul.). 
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Consider some observations based on flow visualization. Contours of constant 
streamwise velocity (figure 18) show, as in Case 1, that the greatest shear stress occurs 
immediately above the peaks as indicated by the smaller spacing of the contours there 
compared to the valleys. The I/ and W velocities deep in the valleys are very small. 
In animations small recirculation regions are observed in the valleys when there is 
a strong cross flow just above the riblet crests. A contour plot of x-vorticity (figure 
19) does not, however, show much vorticity in the valleys but does show vorticity to 
be concentrated near crests. In an (x,z)-plane located at y+ = 18 above the riblet 
valleys low-speed boundary layer streaks (figure 20) are clearly evident. Contours of 
constant wall-normal ( V )  velocity clearly show spanwise discreteness associated with 
riblet crest spacing. In animations stagnation streamlines (actually stream surfaces 
emanating from or re-attaching to the surface) seen in the (y,z)-plane often appear 
to be pinned at the riblet peaks and to jump between peaks abruptly. 

The turbulence statistics near the ribbed surface are shown in figure 21(a-c) along 
with the same statistics adjusted for the height of the riblets in figure 22(a-c). The 
profiles display the same features observed with the smaller riblets except for the 
obvious reduction in run 34 in the maximum values of Reynolds shear stress, v’, and 
w’. The u’ profile is virtually the same as for the flat wall case and is in agreement with 
the smaller riblet results. These results are generally consistent with those summarized 
by Walsh (1990), although the present simulations indicate a clear reduction in vertical 
and spanwise velocity fluctuations. 

Note that the Reynolds shear stress in the valleys is very small compared to the 
region just above the rib crest plane indicating the lack of penetration of high-speed 
fluid from the outer flow into the valleys. This is completely consistent with the 
experiments of Bacher & Smith (1985) who found that the residence time of dye 
in riblet valleys was much longer than near a fixed point over a smooth plate, and 
the transverse spreading rate of dye over a ribbed surface was less than that over 
a smooth surface. There is no significant difference between the location of the 
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maximum values of u', u' and w' over the peaks and valleys in either Case 1 or Case 
2. This contradicts the results summarized in the paper by Coustols & Savill (1992) 
but is consistent with the idea that riblets produce mostly a local effect. The streak 
spacing in Case 2 is, in correspondence with the Case 1 riblet results, about the same 
(1041') for the ribbed as for the opposing flat wall (figure 23a,b). However, over the 
smooth wall R,, again reaches its minimum at roughly y+ = 12 while over the ribbed 
wall the minimum occurs higher at about y+ = 24. 

Small reverse-flow regions in the rib valleys are occasionally observed for the Case 
2 riblets though none were observed for the Case 1 riblets. Reversed flow probably 
has little effect on the overall performance of the riblets but is an indicator of flow just 
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above the ribs. Chu & Karniadakis (1993) have more frequently observed reversed 
flow in their calculations, which may simply reflect the different riblet geometries used. 

The largest velocity observed on one of the frozen grid points (x,) was three orders 
of magnitude less than the channel centreline velocity, thus indicating that the force 
field is reacting quickly enough to track the changing turbulence and to maintain 
no slip. 

4.2. A possible drag reduction mechanism 
The simulations suggest possible drag reduction mechanisms due to riblets. There 
are several available models, each of which appears to explain some aspects of the 
drag reduction phenomena. Present results, in agreement with much of the work 
cited above, show that in riblet valleys the streamwise shear, dU/dn, is small ( n  
is the surface normal coordinate). It therefore follows that the drag is low there. 
The converse is true for the rib peaks which project into the higher speed flow 
(see figure l l b ) .  In laminar flow the reduction of drag in the valleys does not, 
in net, cancel the increase at the peaks. The same geometry which gives rise to 
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a drag increase in laminar flow gives, somewhat paradoxically, a drag decrease in 
turbulent flow. Riblets possibly restrict development of streamwise low speed streaks 
due to streamwise vortices. Yet the optimum peak-to-peak riblet spacing is only 
about a third to a half of a typical quasi-streamwise vortex diameter ( x  3&401*, 
Wallace & B a h t  1988), not nearly wide enough to surround a streak or a vor- 
tex. Also, the present results do not show a substantial change in spanwise streak 
spacing over a ribbed surface compared to the flat-plate case.? Animations of the 
simulations do not exhibit the typical quasi-streamwise vortices settling between 
smaller riblets although small vortices (figure l l b )  have been observed to live for 
some period of time in the valleys. However, one effect that is evident in an- 
imations is that the spanwise meandering of the streaks, which is noticeable in 
flat-plate flows, appears to be damped over the riblets. In addition, and perhaps 
for the same reason, separation or re-attachment events are evident primarily on 
rib crests. 

In the two simulations of turbulent flow over riblets discussed herein, it was found 
that the minimum in R,, is displaced away from the wall by a bit more than the 
riblet height (Bechert & Bartenwerfer 1989 and Choi et al. 1991b also note the 
displacement of the streaks). Yet from these observations it is not clear whether the 
displacement of the streaks is a cause or an effect of the drag reduction. Perhaps if 
the vortices are further away they pump less high-speed fluid toward the wall and 
hence the drag is reduced. Another possibility is that since the riblets reduce drag, 
the region of highest shear moves away from the wall, and, considering the results of 
Lee, Kim & Moin (1990) which show that streaky structures can be due principally 
to the action of the mean shear, the streak displacement may be an effect of the 
drag reduction. 

Riblets might also be thought to damp wall normal fluctuations by deflecting 
upward a downward burst of fluid, thereby countering its effect and perhaps pushing 
the associated vortical structures away from the wall. This is, in a sense, a passive 
mechanism analogous to a smart surface that performs wall normal blowing and 
sucking to reduce turbulent fluctuations. As a boundary layer vortex approaches 
a rib, the rib peak sheds vorticity of opposite sign. This is like the observed 
behaviour near a flat surface except that the shed vorticity from the rib peak is more 
concentrated. Perhaps the concentrated regions of vorticity observed by Choi et al. 
(1991b) and in the current simulations near rib peaks suffer more intense dissipation 
than do the more diffuse patches of vorticity which occur near flat walls. In this sense, 
the turbulence may be more strongly dissipated near riblets. 

Walsh (1990) suggests and the above discussion indicates (also see Bacher & Smith 
1985; Bechert et al. 1986; Bechert & Bartenwerfer 1989, Coustols & Savill 1992; 
Luchini, Manzo & Pozzi 1991) that riblets work by effectively providing an enhanced 
cross-stream resistance to the vortical near-wall motion near the riblet crests. The 
idea is intuitively appealing but to this point it is only a conjecture. Suppose, 
however, that one wishes to isolate the effect of the damping of the spanwise velocity 
fluctuations near the riblet peaks from the other effects of riblets. The strong 
nonlinearity of the flow does not permit a simple superposition of the individual 
isolated effects of riblets. Yet a careful choice of the effects to be isolated should 
elucidate some of the important mechanisms underlying riblet drag reduction as we 
show next. 

Others have found differences. See Walsh (1990) for riblet results and Handler et ul. (1993) for 
a discussion of polymer additive results. 
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FIGURE 24. Geometry for flow simulation of channel bounded by two impermeable no-slip bound- 
aries and containing lines (grey) along which the w velocity is damped. These schematically drawn 
lines of force represent the effects of the crests of the riblets. A uniform pressure gradient force is 
applied throughout the domain. 

4.3. Simulation of modelled riblets 
4.3.1. Wire-like region of cross-flow damping 

To determine the effect of cross-flow damping, simulations were performed in 
which a damping of the spanwise ( w )  velocity fluctuations is imposed on the flow at 
locations which are representative of real rib crests. The geometry for the modelled 
flow is given in figure 24. Such damping is easily applied by creating a force field only 
in the z-direction with a = 0 and choosing a damping constant, (I (see (3)). In this 
way, there is no net force applied to the flow in any direction. The spacing between 
rib peaks, the height of the peaks and the magnitude of damping p are all varied 
thereby exploring a region of the parameter space governing the flow physics. The 
force field corresponds to part of the effect which would be created if a fine wire 
had replaced each riblet crest. For these simulations (runs 36-52) the computational 
domain is 1250, 250, and 625 viscous units in the x-, y-, and z-directions respectively 
and the boundary condition on the surface below the force field is U = 0 (no slip). 
Details of additional computational parameters for each run are given in table 4. For 
each run 32 independent realizations were obtained. 

The turbulence statistics for representative run 36 (S+ = 18.4, H +  = 5.1, and 
fl  = 5), which has roughly the same dimensions as the full riblet simulation (Case 
l), are shown in figure 25(a-c). The asymmetry of the profiles clearly indicates that 
the spanwise damping near one wall is having a strong effect on the turbulence. 
For clarity, the velocities were normalized by a unit velocity as opposed to the local 
friction velocity, so as to accentuate the asymmetry. There is a drag decrease on the 
damped side of the channel and 3 resulting overall mass flux increase. The Reynolds 
shear stress and fluctuating velocities near the damped wall are noticeably decreased 
compared to the undamped side. The turbulence profiles above the damped wall have 
also been normalized by the damped wall friction velocity and length scale in figure 
26(a-c). The resultant profiles show much the same trends as the statistics from the 
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FIGURE 25. (a) Fluctuating velocities across the whole channel. ( b )  Mean velocity profile. 
(c) Reynolds shear stress. No normalization is used so the two sides may be compared. Note 
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full riblet simulations. The Reynolds shear stress and u‘ and w’ peak amplitudes are 
reduced and the peaks are shifted further from the wall while the u’ peak is shifted 
away from the wall. There is little difference between the u’ and v’ over the damped 
rib crests (that is, the wire-like structures) and over the valleys (the regions midway 
between the crests corresponding to the real riblet valleys). Near the crest plane 
( H +  m 5 )  there is a sizable decrease in w’ over the valleys and a much larger dip 
right at the peak. This difference between the crest and the valley does not propagate 
far into the flow. There also is a small increase in iE immediately above the crests 
compared to that over the valleys, which we did not observe over the fully modelled 
riblets. The mean velocity profile exhibits a linear sub-layer and a clear log-layer with 
an apparent increase in the vertical extent of the buffer zone, an effect also seen in 
the riblet simulations. 

The streak spacing near the damped wall (A+), as for the riblet wall, is about 110 
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FIGURE 26. Profiles near w-damped wall. (a) Fluctuating velocity profiles, ( b )  mean velocity profile 
and (c) Reynolds shear stress profiles: __, Handler et. al.; . . ., above crests; - - - , above valleys. 
In ( b )  the dashed line denotes above both crests and valleys. 

(figure 27). The covariance R,, reaches its minimum at about y+ = 19.8, about 8 wall 
units farther from the wall than for a flat surface. The dependence of the height of 
the streaks above the wall on wire spacing, ( H +  held constant) is shown in figure 28. 
As S+ drops to less than about 30, the streaks rise above the plane on which the 
spanwise damping is applied. This is consistent with the observation by Coustols & 
Savill (1992) that blade-like riblets with S+ < 35 displace eddies away from the wall 
while more widely spaced riblets do not have this effect. If the average streak spacing 
is about 100, the vortex core spacing should be about 50 so that for Sf larger than 
50 one expects that the vortices might settle between the crests. An S+ of roughly 25 
(half the core spacing and less than a core diameter) or less can be expected to keep 
the vortices away from the wall. This conjecture is confirmed by the results shown in 
figure 28 and is consistent with the results from the full riblet simulations. This is also 
consistent with the experimental finding that drag reducing ribs must be spaced less 
than about 301" apart to be effective in reducing drag. In general, the present results 
show no trend in the variation of the streak spacing with S+ (or for that matter, H+ 
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FIGURE 28. Streak height above the boundary (defined as height of absolute minimum in Ruu) as 
crest spacing is varied, -, Wire-like model; 0, fence-like model; . . ., height of crests (shown for 
reference). 

and p ) ;  the streaks tend to retain their 105 15 spacing. Finally, note that reverse 
flow (u < 0) commonly occurs right near the wall below the spanwise damping field. 
This is probably because the boundary layer has been slowed and thickened and the 
flow is thus more easily separated by an external pressure fluctuation. 

The effect of spanwise damping on surface drag is now considered. In figure 29(a) 
the dependence of the drag ratio on S+ (H+ = 5 and p = 5 )  is shown. It is evident 
that the more closely spaced the rib peaks the lower the drag and the greatest drag 
reduction (29%) occurs for S+ = 5.8. When S+ drops below about 11, however, the 
drag reduction saturates, These results are intriguing in light of the experimental data 
for riblets compiled by Walsh (1990) in which there is a drag reduction maximum for 
S+ = 12. The large drag reductions compared to those of real riblets occur mostly 
because real riblets project substantial wetted surface area into the high-speed flow 
away from the wall whereas the damping field does not. For large Sf there was little 
drag reduction. However, unlike in the riblet experiments, spanwise damping never 
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appears to increase drag for any value of S + ,  indicating that cross-flow damping is 
only a beneficial effect. 

In figure 29(b) the dependence of the drag ratio on H+ (Sf = 37 and p = 5 )  is 
shown. There appears to exist an optimal value of H+ (= 7) which gives the lowest 
drag. For smaller H +  the local w-fluctuations are already small so the damping has 
little effect. For larger H+ it appears that the flow below H+ recovers from the 
damping sufficiently so that there is little effect on the turbulence except for the w' 
profile, which still shows a localized dip (figure 30). These results at first appear to 
indicate that there is an optimal rib height similar to that found in the results compiled 
by Walsh (1990) of between 51' and 151'. However, the presence of cross flow below 
the damping wires does not correspond to what can occur below a solid riblet's crest 
where obviously no fluid may flow. This difficulty is discussed further in 54.3.2. 

Finally, consider the effect of varying the strength of the damping parameter. If 
one assumes that very rounded riblets (virtually a flat wall) have little damping effect 
and that sharply peaked ribs probably have the greatest effect (see Bechert et al. 
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Y+ 
FIGURE 30. Spanwise averaged w’ profiles normalized by ~ l ; , , ~ ~ ~ .  __ , Handler et al.; - - - ,  
H +  = 21.1, j = 5, S+ = 36.6; . , . ., H +  = 5.3, j = 5, S+ = 36.6. Note how, for the H+ = 21.1 case, 
the fluctuations recover below H+.  

1986; Chu & Karniadakis 1993; Luchini et al. 1991; Walsh 1990) one can investigate 
the effect of sharpness by varying p. The connection between p and the sharpness 
of a real riblet peak is tenuous and simply reflects the assumption that a sharp peak 
will resist cross-flow more effectively than a smooth peak and that f l  is a qualitative 
measure of the resistance. The effects of varying the damping ( H +  = 5 and S+ = 36) 
on drag are shown in figure 29(c). Drag benefits from increasing p appear to saturate 
at some point and drag is not further reduced by increasing ,!I further. This saturation 
may have implications for the usefulness of trying to sharpen experimental riblets. 

4.3.2. Fence-like region of crosslflow damping 

The wire-like cross-flow damping model neglects the effects of no cross-flow which 
occurs below real riblet peaks. To model this effect, additional simulations were 
performed in which the cross flow damping was applied on rib peaks as well as on 
all grid sites directly below the peaks. This situation is analogous to modelling small 
boundary layer ‘fences’ which do not directly affect the wall normal and streamwise 
velocities. The drag results obtained with these fence-like configurations are given 
in figure 29 (runs 53-56; table 4). It is found that the fence- and wire-like models 
correspond well unless H+ is large. For large H +  fluid can flow under the wires 
but not under the fences and the drag reducing effect of the fences increases with 
increasing H + .  If the wires are close to the wall, little of the viscous cross-flow can 
pass between the wires and the wall through the narrow gap. Thus, the optimal H +  
value discussed in the previous section and seen in figure 29(b) for wire-like structures 
is not expected to apply to real riblets which prevent all flow below the peaks. 

For fences (or wires) which are closely spaced, u’ over the peaks and valleys is 
nearly the same, but for fences, if S+ is increased, u’ and the Reynolds shear stress 
over the peaks becomes appreciably greater than the corresponding values over the 
valleys (see figure 31a-c). This qualitative observation is in agreement with the recent 
experimental results of Vukoslavcevic et al. (1992) in which, for riblets with S+ = 35 
and H +  = 17.5, u’ is found to be 12% greater over the peaks than over the valleys. 
The present results show a similar but less obvious separation between the peak and 
valley curves of u’ and w’. It appears that widely spaced riblets, fences, or wires deflect 
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the cross-flow up and over the peaks and that this brings high-speed fluid toward 
the wall and low-speed fluid away from it; hence, u’ and the Reynolds shear stress 
is locally enhanced. If the wires or fences are closely spaced there is little cross-flow 
motion in the valleys to be deflected. This suggestion differs from the explanation by 
Vukoslavcevic et al., that the riblet is inclined away from the peak and is thus less 
effective in damping u’ fluctuations; w’ damping fences or wires cause the same effect 
without directly damping u’ at all. Note that for the fences p = 5 so the damping is 
strong enough to nearly halt the cross-flow. 

4.3.3. Real wires over a f l a t  plate: KramerS idea 
For a comparison with the riblet, wire-like damping and fence-like damping simu- 

lations, consider one final calculation in which a set of real wires is modelled. This 
is essentially the situation described by the Kramer patent (1937). All three velocity 
components are brought to zero on a string of grid points at Sf = 40.5 and H +  = 5.5 
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in effect representing fine, unresolved wires at these locations. As discussed earlier, if 
only w-fluctuations are damped there is a 16% drag reduction on the damped side 
of the channel underlying the damping region. With the real wires, however, the net 
drag is found to increase by 5%. This result is in modest agreement with the results 
of Bruse et al. On the real wires, of course, there is streamwise drag whereas on the 
w-damped ‘wires’ there was none. In figure 32(a-c) the mean profiles from this run 
are shown. The values of u* and 1* used here are those found by assuming that the 
shear stress is the total shear stress which is the sum of that on the wall and the wires. 
The u’ maximum is displaced away from the wall and is greater over the wires than 
between them, and v’ and w’ are little affected except near the wires. The maximum 
Reynolds shear stress is 12% greater over the wires than over the valleys. These effects 
are very much like those described above (54.3.2) and indicate that widely spaced real 
wires also deflect cross-flow up and down. The mean streamwise velocity profile has 
been shifted down and to the right as would happen over three-dimensional surface 
roughness. Below y+ = 15 R,, (not shown) has very strong correlations at a spacing 



312 D. Goldstein, R. Handler and L. Sirovich 

of 40.51' corresponding to the viscous effect of evenly spaced protrusions into the 
flow. Above y+ = 15 the correlation returns to that found over a flat plate with a 
streak spacing of about 1021'. A range of wire heights and spacings must be tried 
before further conclusions can be drawn. 

5 .  Summary and discussion 
5.1. Numerical approach 

The method of virtual boundaries has enabled the modelling of a relatively complex 
boundary geometry by means of a spectral code. Simulations of laminar flow 
over riblets were used to explore the sensitivity of the solutions to grid resolution, 
smoothing techniques, and certain boundary conditions. A detailed analysis of 
turbulent flow over a virtual flat plate was performed. These and other tests strongly 
support the correctness of our simulations. 

The simulation of riblets with body forces appears unique in that a spectral code 
already validated for turbulent channel flow in can easily be modified to approximate 
a complex geometric structure on one of the boundaries. While the method of 
virtual boundaries is not an exact simulation of solid boundaries, it is a quantitatively 
accurate model calculation for the geometries in which it has been tested. Although 
the method has several drawbacks, these can be largely overcome by the methods 
discussed earlier, and it appears that the technique may be useful for obtaining a 
reasonably accurate representation of a surface. As with any other computational 
technique where surface details are of interest, it is necessary to have a non-uniform 
mesh that concentrates grid points near the surface. For example, in the riblet 
calculations of Choi et al. (1991a,b), Chu et al. (1992) and Chu & Karniadakis 
(1993) mesh points could be concentrated right along the rib surface. In the present 
calculations the Chebyshev cosine grid did enable us to concentrate grid points near 
the riblets, though not in an optimal way. The fact, however, that the spanwise grid 
spacing was everywhere constant (128 or 256 modes in the full riblet computations) 
was costly in that the increased z-resolution was not needed away from the ribbed 
surface. 

5.2. Simulations over riblets and modelled riblets 
The virtual surface approach was used to simulate fully turbulent flow over small and 
large riblets. The mean and fluctuating velocity and Reynolds shear stress profiles for 
both cases were compared with those over a flat plate. Two-point autocorrelations of 
the streamwise velocity were used to determine the characteristics of the low-speed 
boundary layer streaks. Based on these results, a simple model for the beneficial effect 
of riblets on turbulent flow was described. The hypothesis is that riblets reduce drag 
in part because of the damping of spanwise velocity fluctuations by the rib crests. To 
test this idea, simulations were performed in which the force field was used to damp 
only the cross-flow. 

While most of the present results for full riblet simulations correspond well with 
those of Chu & Karniadakis (1993), one does not: the present results do not show 
the small hump they find in the u' and w' profiles in the riblet valleys. This difference 
may be due to the greater sharpness of their riblet peaks which allowed the ribs to 
more easily shed vortices which can then form recirculation cells in the valleys. It is 
interesting to note, however, that the experiments of Vukoslavcevic et al. (1992) on 
Hi  = 17.5 and S+ = 35 ribs show no hump. Hence, the presence and or importance 
of the hump remains an open question. 
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It appears that the model of riblet peaks providing a damping of the spanwise 
velocity fluctuations may explain many of the effects caused by real riblets. Depending 
on the parameters, there can be large drag reductions on the surfaces above which 
spanwise damping was used. The turbulence statistics and the dependence of drag on 
(modelled) riblet height and spacing were found to be remarkably similar to the results 
obtained with full riblets. We believe that we have demonstrated for the first time that 
cross-flow damping alone can explain many of the effects of riblets in turbulent flow. 

These damped wire simulations may clarify a principal drag reduction mechanism 
proposed for riblets and help answer the question: is the upward displacement of 
the streamwise streaks a cause of the drag reduction or an effect of it? A real 
riblet presents a solid surface exposed further into the flow than does a flat plate. 
This displaces the region of high shear, due to the no-slip condition, away from the 
wall. Lee et al. (1990) note that streaky structures appear in sheared turbulent flow 
simply due to the action of the shear so that riblets might be expected to displace the 
streaks by changing the y+ location of maximum shear. The w’ damping calculations 
show, however, that even without directly acting on the U velocity component (and 
hence without directly affecting dV/dy) the ribs can displace the streaks by deflecting 
upward the cross-flow motion caused by the vortices. The vortices themselves can 
then cause an increase in shear in the y+ region where they reside (by vertical stirring) 
and their displacement can result in a decrease in wall shear below that region. This 
means that, while the presence of a no-slip surface can contribute to the displacement, 
it need not be the sole cause of that displacement. 

Experiments related to the simulation of real wires have been performed. Johansen 
& Smith (1983, 1986) placed monofilament fishing line flush against a flat plate in 
turbulent flow and studied streak formation and certain velocity profiles. Their fishing 
line (diameter = 41’) was generally spaced more widely than our wires. Nonetheless, 
their data are remarkably similar to ours. In the data they present for u’ for a case 
of S+ = 142, H +  = 4.2 (hence, widely spaced wires with a height nearly the same as 
ours) they too find that u’ over the valleys is greater than over the peaks for y+ < 
about 10. This order is then switched for 10 < y+ < 30 and then the two profiles 
are about the same for y+ > 30. They also find that the wires essentially displace 
the peak in the u’ profile away from the wall by the height of the wire. They found 
that the streak spacing was fixed at S+ for values of y+ of around 10 or less but 
that the spacing reverted to that of a regular flat plate for y+ of 15 and higher. 
They interpreted their results as the fishing line ‘focusing’ the streaks above the line 
or as acting as ‘nucleation sites for streak formation’. It appears that the relative 
insensitivity of streak spacing (normalized by the viscous length scale) for y+ of 10 
or more wall units above the protrusions, to either their different experimental values 
of S+ or our various parameters discussed above, indicates that the streaks can be 
displaced upwards but that their spacing is set by the mean wall shear stress. The 
viscous ‘focusing’ effect remains within the viscous sublayer. 

For a physical experiment it is difficult to conceive of a way to non-intrusively damp 
one velocity component in non-conducting fluids. Experiments in conducting fluids, 
where a strong magnetic field is applied to damp fluctuations in pipe/duct flow, do 
show large drag reductions (Tsinober 1990). In those flows uni-directional damping 
makes the flow (locally) more two-dimensional with a resulting inverse energy cascade 
(small scales to large scales). The present simulations do not, however, show a clearly 
two-dimensional flow (mostly u’ and v’, with little w’) in the valleys between riblets, 
wires or fences. 

We have also briefly tried other damping schemes. Spanwise damping in the whole 
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volume of flow below the rib peaks ( H +  = 5 )  produced slightly different results from 
damping only at the rib peak plane for small values of S + .  Damping v instead of w did 
produce some drag reduction (perhaps up to 20%, depending on the configuration) 
but generally not as much. This is probably because near a wall v’ is already quite a 
bit smaller than w’ and there is thus little motion to damp. Choi, Moin & Kim (1991b) 
and Moin, Kim & Choi (1989) have also modelled a method of actively controlled 
wall normal blowing and sucking to damp 0’ and found a similar drag reduction. 
The greater effect we find, however, by damping spanwise velocity fluctuations may 
indicate that a spanwise component to a blowing jet may be useful. 

The overall image we obtain for the effects of riblets is that their beneficial effect 
can be simply described as damping cross-flow fluctuations. Very short riblets do not 
protrude far enough into the flow to sufficiently damp w (or v )  fluctuations. Larger 
riblets, S +  w H +  w 10 to 20 do damp w and have lower drag in the valleys but 
produce greater drag near the rib peaks. Ribs that are spaced closely enough do 
not allow the large boundary layer streamwise vortices to settle between them. The 
drag benefit of riblets, probably from displacing the streamwise vortices, reaches a 
maximum as S +  drops below about 12. Widely spaced ribs, while still able to damp 
fluctuations, allow the boundary layer vortices to lie in the valleys. These vortices can 
bring high-speed fluid close to the wall and reduce the riblet effectiveness. 
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gratefully acknowledged. 
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